Symmetric Duality for Structured Convex

نویسنده

  • L. MCLINDEN
چکیده

A fully symmetric duality model is presented which subsumes the classical treatments given by Duff in (1956), Eisenberg (1961) and Cottle (1963) for linear, homogeneous and quadratic convex programming. Moreover, a wide variety of other special objective functional structures, including homogeneity of any nonzero degree, is handled with equal ease. The model is valid in spaces of arbitrary dimension and treats explicitly systems of both nonnegativity and linear inequality constraints, where the partial orderings may correspond to nonpolyhedral convex cones. The approach is based on augmenting the Fenchel-Rockafellar duality model (1951, 1967) with cone structure to handle constraint systems of the type mentioned. The many results and insights from Rockafellar's general perturbational duality theory can thus be brought to bear, particularly on sensitivity analysis and the interpretation of dual variables. Considerable attention is devoted to analysis of suboptimizations occurring in the model, and the model is shown to be the projection of another model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions

In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...

متن کامل

A note on symmetric duality in vector optimization problems

In this paper, we establish weak and strong duality theorems for a pair of multiobjective symmetric dual problems. This removes several omissions in the paper "Symmetric and self duality in vector optimization problem, Applied Mathematics and Computation 183 (2006) 1121-1126".

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Duality for second-order symmetric multiobjective programming with cone constraints

In this paper, a new pair of Mond-Weir type multiobjective second-order symmetric dual models with cone constraints is formulated in which the objective function is optimised with respect to an arbitrary closed convex cone. Usual duality relations are further established under K-η-bonvexity/second-order symmetric dual K-H-convexity assumptions. A nontrivial example has also been illustrated to ...

متن کامل

On Nondifferentiable Higher-Order Symmetric Duality in Multiobjective Programming Involving Cones

In this paper, we point out some deficiencies in a recent paper (Lee and Kim in J. Nonlinear Convex Anal. 13:599–614, 2012), and we establish strong duality and converse duality theorems for two types of nondifferentiable higher-order symmetric duals multiobjective programming involving cones.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010